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1. Introduction

In this paper we consider the problem of testing an hypothesis H0

versus an alternative H for situations in which a large number of tests

are to be performed and in which HI occurs only rarely. Such situations

arise in many applications. For example, in search radar, the radar

examines a large number of resolution cells on each scan of a search area,

but it is expected that targets will be present in only a small fraction

of the resolution cells. Similar situations arise in applications such

as medical testing and quality control.

The tests we consider here are described as follows: For each test,

a sample is taken and a standard procedure is applied to decide whether

or not H0 can be accepted. If H is accepted, then the test ends. If H0

is not accepted, then a second sample is taken from the same population

and a second test is performed to double-check the result. Thus, H0 is

rejected only if it is rejected on the basis of both samples. The

*. motivation for this type of testing is that, for small probability of Type

I error on the first check, the average sample size under H0 will be very

nearly that of the first sample, whereas the overall performance should be

superior to a test using only the first sample. The trade-off, of course,

is that the average sample size under H1 may be larger than that required

for a comparable fixed-sample-size test; however, since H1 is assumed to

occur only rarely, the overall average sample size should be smaller than

that of a comparable fixed-sample-size test.

In this paper, we consider two such double-check procedures - Procedure

1 in which the double-check is performed only on the second sample, and

Procedure 2 in which the doub le-check is performed on the first and second

samples combined. To investigate the properties of these tests, we consider

'-.o.
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primarily the specific problem of location testing with i.i.d. normal

errors. We compare the power functions and average sample sizes of these

procedures to those of fixed-sample-size tests of the same significance

level and with various sample sizes. We also consider the Pitman

asymptotic efficiency of these two procedures relative to both fixed-sample-w
size tests and sequential tests. Nonparametric versions of the new

procedures are also proposed and an analysis of their behavior is included.

Finally, a generalization is considered in which H0 is rejected only after

being rejected on k samples where k is a positive integer.
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2. General Description and Error-Probability Performance

K Suppose we have two samples Xi - a +cis i=1,2,...,n1 and X= a +cis

S= nl +l,...,n, where €1,...,€n is an i.i.d. sequence of 17(0,1) errors and

where 8 - 0. Consider the two tests for the hypothesis H0:8 =0 versus the

alternative H1 :6 > 0,

". ; if E xi rlI and "xi k '2
* ' =l i -n,+l 2

. DCl in) -T (1)
0; otherwise

and
n 1 nI; if Z x I : T, and E x i

YDC2 (-)  i-l i~l (2)

0;= irin ii(2)
0; otherwise

where cPDC1() [resp. cDC2() ] is the probability with which we accept H,

a given that (X I...Xn) (xl,...xn) x, and and T2 [resp. Til are

chosen to give desired probability of Type I error. Note that size t can

be achieved by choosing Ti to yield size j* k o on the first check (i.e.,

r I = 1) (I-*) where 4D denotes the unit normal distribution function)

and then choosing T or to give overall size a. For (1), the second

threshold is thus given by T2 = n-nl ( II- *), and for (2) the second

threshold is given by 2 = b where b is the solution to the equation

-1
= F(4' (l-a*),b) - O(b), (3)

where F denotes the joint unit normal distribution function with correlation

coefficient (1+ K) where K = (n-nl)/nI .

Note that the average sample size under H0 of either (1) or (2) is

given by (1+t*K)nl, and the average sample size under H1 of either test

is given by (l+ O*K)nl, where 0* 1 - -D84 9). Also, the
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power functions (i.e., power versus 8) of cpDC and YDC2 are easily computed

using standard techniques. The behavior of DCl and cDC2 was compared to

that of the fixed-sample-size test
I'." M

{ if I
* = i- (4)

- 'PFSS (-)  ()

0; otherwise

for a variety of choices of the test parameters a, c*, K, and M and for

n = 20. Table 1 contains data for the particular cases a =0.01, n1 = 8,

a* =0.5 and 0.2 and M - 10, 15, and 20. These values of n1 and a* are used

because they appear to be nearly optimum for cDC2 with this choice of o

and n, and the behavior exhibited in Table 1 is typical of the general

optimum behavior of cDC and 'DC2" Note from Table i that, for the choice

a* - 0. 5. DC1 and CDC2 have power functions very near those of 'FSS with

i M=15 and 20, respectively. In this case, cDC2 is clearly superior to the

comparable fixed-sample-size test, whereas 'DCl is not. Alternately, for

the choice l* -0.2, DCl has a power function which is greater than that of

the M= 15 version of cFSS while requiring only 10.4 samples on the average

under H0 . Note that the M =10 version of cFSS is not comparable to 'PDCl

* in this case. Note also that, with C*=0.2, rPDC2 still compares favorably

with the M = 20 version of cFSS in terms of power while rataining the small

average sample size under H0. It is noteworthy that the average sample

sizes of the double-check tests can in no case exceed n under either

hypothesis.
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3. Asymptotic Efficiencies of the Double-Check Tests

Another comparison of interest is to consider the Pitman asymptotic

efficiencies (as defined, for example, in Noether (1955)) of the tests

(1) and (2) relative to (4). In particular it is straightforward to show

that, for fixed t and power B, under H0 we have

0 [2 (l-)- 1-8) (5)
AR C ,FSS ( K)R 2  (5)

where, for YDCI' the parameter R is the solution to the equation

4D(R -Z'(l-a*))4( R- i (l-)/aR*)), (6)

and, for (DC2' R solves

=D(R - '(1-y*)) -(b - Fl-+K R) + F( (I -o*) - R, b- fl-KR), (7)

where b and F are as in (3). Similarly, under H1 we have

AI (1 + *K) 0£ ARDc,FSS = I+ K)AREcFS (8)

D(I+*K) DCFSS

where 8" is as defined above.

Values of AREDc,FSS for j =0 and 1 are given in Table 2 for a variety

of values of t*, K, a, and 0. Note that cPDC 2 is uniformly superior to

cFSS under H0 for the ranges of parameters considered. Furthermore, in

each case, values of &* and K can be chosen so that cDC2 is nearly as

* efficient as VFSS under H, as well. As expected, CFDCl is slightly less

efficient than DC2' but a* and K can be chosen to yield efficiency under
°YD""

H 0 higher than that of YFSS in each case considered. The conditions of

Table 2(c) (i.e., a 10 - , -0.95) appear to be most favorable for

............. **.. .
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* performance under H0 of either double-check test. These general conditions

(i.e., very small a and moderate (1-0)) are the most prevalent for many

testing problems (such as that arising in search radar). The antipodal

conditions (very small (1- ) and moderate a) are less favorable for

performance of the double-check tests. However, these latter conditions

carry the implication that Type II errors are more significant than Type I

errors, and thus that the double-check should be performed only when rejecting

H1 rather than when rejecting H0 . This would result in the performance

tabulated in Table 2(c) with the roles of H 0 and H1 reversed.

Of course, the optimum multistage test (in terms of average sample

size) is the Wald sequential probability ratio test (SPRT). The asymptotic

* " efficiency of SPRT relative to cPFSS has been considered by Paulson (1947) and

Bechhofer (1960), and by combining their results with (5) and (8) the

asymptotic efficiencies of YDC1 and cDC2 relative to the SPRT can be com-

puted straightforwardly. Typical values of the asymptotic efficiency of

-DC2 (with o* = 3 and K - 2) relative to the SPRT are given in Table 3.

Note that these values range from approximately 36% to approximately 657

under 0 and from approximately 117 to approximately 367. under H1 . Thus,

as is expected, the SPRT is superior in performance to cpDC2" However, the

double-check tests are still preferable to the SPRT for many applications

for several reasons. First, the double-check test is much simplier to

implement since it requires at most two comparisons. Further, the thresholds

of the double-check tests can be set without knowledge of the true value

of e under H1 . This is not true of the SPRT. Moreover, the SPRT can be

less efficient than even the fixed-sample-size test if an incorrect value

* of 9 is assumed (Wald (1947)). Finally, the maximum value of the sample

size is finite for the double-check test, whereas the sample size of the

L .--........... ... .... ...-..... .% ** ***.* - . .. -. ...... . .- .. .- - - ---'-.-.. ..
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SPRT can assume any positive integral value (although this disadvantage of

the SPRT can, of course, be eliminated by truncation).

I-.
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4. A Nonparametric Version of YDC

Nonparametric versions of (1j and (2) are easily constructed by re-

placing the linear statistics with (H0) distribution-free statistics. For

example, if X. is replaced by sgn(Xl) and randomization is introduced on

the threshold boundaries, then the tests of (1) and (2) become nonparametric

for the hypothesis P(Xi < 0) = J. The power functions (for the alternative

P(Xi Z 0) = p > J)of these particular nonparametric versions of (1) and (2)

are compared to that of the fixed-sample-size sign test (i.e., (4) with

Xi replaced by sgn(Xi) and with randomization on the threshold boundary) in

Table 4. Note that the Pitman asymptotic relative efficiencies (for location

testing) between these modified tests will be the same as those for the

linear tests within mild regularity conditions on the distribution of the

Ci (such as those given in Noether (1955)). It is also noteworthy that,

again within regularity, the asymptotic location-testing efficiencies of

these double-check sign tests relative to the linear test of (4) are

4f 2(0)Var(ci) times the value computed from (5) and (8), where f is the

probability density of e." For the case of normal errors we have

24f (0)Var(c.) = 2/, and thus, whenever a value from Table 2 exceeds

TT/2 -157, the (nonparametric) double-check sign test is more efficient

* -than the Neyman-Pearson test for normal errors.

0.

..............................
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5. k-Stage Tests

The above analysis of the double-check tests of (1) and (2) can be

extended straightforwardly to tests which reject H0 only after k samples.

For example, consider the following test based on knI i.i.d. observations:

n 2n kn 1

i; if mit E xi  E xi,..., l x 1(11/k)
l i-n1 +1 i=(k-l)n +l

0; otherwise

(9)

Note that the case k -2 is cDCI with o* =,o and K= 1. In general this

test distributes the Type I error uniformly over the k samples. The

asymptotic efficiency under H0 of (9) relative to (4) is given straight-

forwardly by

- (1- l/k)0[-1l-) I"(l_)]2 (10)

and under H1 we have

1 -l/k)(-) 0
1RE A.RE (_ kC,FSS -(-)(- I/k) kC,FSS

I

Table 5 gives values of the quantities of (10) and (11) for several values

of a and 0 and for values of k from 2 to 10. Note that the addition of

stages improves performance under H0 to a point (significantly in some cases),

but that there is a diminishing return and even decreased performance

f associated with larger numbers of stages. Also note that, as one might

expect, the performance under H1 degrades with increasing k. As a general

rule, it appears that the addition of mre stages is helpful in those cases

.******.******o" **.**.*-. . *.• * *..
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in which tD performs well. Other k-stage versions of (1) and (2) are

straightforward to analyze; however the number of variables specifying

such tests prohibits a concise meaningful analysis of their performance.

.
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6. Conclusions

r In this paper, we have proposed and analyzed a potentially useful

class of multistage tests. It should be noted that, although we have

* "considered only the linear test statistic with normal errors and the sign

test statistic, the relative efficiency expressions and numerical data of

Sections 3 and 5 are applicable to much broader classes of parametric

*testing problems, test statistics and error distributions, subject to mild

regularity conditions (such as those of Lai (1978), Noether (1955), and/or

Paulson (1947)). As demonstrated by the analysis of the above sections,

the proposed tests are intermediate in terms of efficiency to fixed-sample-

size tests and sequential probability ratio tests. Their implementational

* .complexity and insensitivity to parameter mismatch, however, are comparable

to those of fixed-sample-size tests. Thus, the tests proposed here may be

f preferable to both the fixed-sample-size test and the sequential probability

ratio test for many applications.

... .. .. ..

*. * b . %
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n1 8; n 20

': - F S S (a ) * = 0 .5 * -0 .2
_____ FSS~ * 5

8' M= 10 M = 15 H= 20 1(e) 02(9) E(NIe) 1(e) 02() E(NIB)

0.0 0.01 0.01 0.01 0.01 0.01 14.00 0.01 0.01 10.40

0.2 0.045 0.060 0.076 0.062 0.076 16.57 0.067 0.074 12.70

0.4 0.144 0.219 0.295 0.220 0.294 18.45 0.244 0.281 15.37

0.6 0.334 0.499 0.639 0.487 0.637 19.46 0.537 0.607 17.65

0.8 0.581 0.780 0.895 0.754 0.892 19.86 0.802 0.862 19.07

1.0 0.798 0.939 0.984 0.919 0.983 19.97 0.943 0.967 19.72

Table 1: Power functions of fixed-sample-size linear tests and double-

check linear tests. $1(-) and $2(.) are for double-check

procedures 1 and 2, respectively. The errors are normally

distributed and the significance level o equals 0.01.

3. "
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Table 2: Asymptotic efficiencies under H and H of the double-check

tests relative to the fixed-sample-size test. The values in

:1 I parenthesis are those under H1 .

* (a) c= (1-0) 0.05

CI &JC cy CO*=lI.V.,

K proc #1 proc #2 proc #1 proc #2 proc #1 proc #2 proc #1 proc #2

1.071 1.070 1.117 1.119 1.209 1.235 1.052 1.249
3.0 (.427) (.427) (.485) (.486) (.628) (.642) (.799) (.949)

1.202 1.209 1.257 1.279 1.284 1.390 .946 1.252
2.0 (.562) (.566) (.626) (.637) (.732) (.792) (.741) (.980)

1.255 1.283 1.287 1.355 1.232 1.429 .841 1.234
1.5 (.655) (.669) (.704) (.742) (.751) (.871) (.676) (.991)

1.25 1.259 1.316 1.266 1.381 1.163 1.428 .769 1.217

(.701) (.732) (.734) (.800) (.740) (.909) (.628) (.995)

1 . 1.227 1.335 1.200 1.388 1.050 1.406 .679 1.194
(.736) (.801) (.743) (.860) (.704) (.943) (;575) (.998)

. (b) = (1) =10-6

3 K proc #1 proc #2 proc #1 proc #2 proc #1 proc #2

1.466 1.467 1.511 1.512 1.597 1.597~2.0
(.490) (.490) (.505) (.505) (.535) (.535)

1.5 1.467 1.467 1.513 1.513 1.599 1.599
(.588) (.588) (.606) (.606) (.642) (.643)

1.25 1.467 1.467 1.511 1.513 1.578 1.600
(.653) (.653) (.673) (.674) (.704) (.714)

1.417 1.468 1.405 1.514 1.352 1.601
(.709) (.735) (.704) (.758) (.678) (.803)

0.8 1.174 1.468 1.139 1.513 1.084 1.598
(.653) (.816) (.634) (.842) (.604) (.890)

.734 1.439 .712 1.461 .678 1.4820.5 (.490) (.960) (.475) (.975) (.453) (.990)

..



Table 2 (continued)

(c) of = i 6  1- 0.05

K proc #1 proc. #2 proc #1 proc #2 proc, #1 proc #2

30 1.820 1.821 1.916 1.915 2.102 2.103
30 (.474) (.474) (.500) (.500) (.551) (.551)

1.821 1.822 1.915 1.918 2.089 2.104
20 (.629) (.629) (.662) (.663) (.724) (.729)

15 1.801 1.819 1.872 1.909 1.967 2.067
15 (.743) (.750) (.771) (.786) (.808) (.849)

1.5 1.747 1.805 1.784 1.883 1.806 2.004
1.5 (.795) (.822) _(.810) (.855) (.816) (.906)

t

(d) =0.05, (1-s) 1 0-6

of *fa1 or* sro of VC

K proc #1 proc #2 proc #1 proc #2 proc #1 proc #2

1.5 1.050 1.052 1.023 1.075 .725 1.151
1.5 (.597) (.598) (.645) (.678) (.592) (.940)

10 1.047 1.101 .911 1.143 .638 1.175
10 (.641) (.673) (.608) (.763) (.533) (.981)

.912 1.142 .769 1.199 .555 1.165
08 (.597) (.748) (.542) (.845) (.474) (.995)

05 .606 1.201 .522 1.239 .399 1.123
05 (.449) (.890) (.407) (.964) (.355) (1.000)

.



10 2 .654 .580 .490 .356

10 (.233) (.238) (.249) (.270)

.04 629 .611 .555 .438

10-5 .612 .630 .593 .489

Table 3: Asymptotic efficiencies of Procedure 2 double-check test

relative to the sequential probability ratio test under

HO and H.The values in parentheses are those underH

3The double-check test has ct* Vc3t and K=2.



n 8 n =20

~ cy*0.4" 1 FSS (p )  0*fiO 4 .2

p M= 10 M= 15 M= 20 1 (p) 02 (p) E(NIp) 1 (p) p2 (p) E(NIp)
U

0.5 0.01 0.01 0.01 0.01 0.01 12.80 0.01 0.01 10.40

0.6 0.043 0.056 0.072 0.062 0.071 15.50 0.064 0.070 12.63

0.7 0.140 0.204 0.287 0.229 0.286 17.89 0.240 0.276 15.40

0.8 0.355 0.512 0.678 0.554 0.676 19.40 0.578 0.652 18.01

0.9 0.707 0.874 0.966 0.894 0.965 19.95 0.910 0.949 19.64

r

--Table 4: Power functions of fixed-sample-size sign tests and double-check

sign tests. The value p is the probability of having a positive

observation. 01(" ) and 02(. ) are for double-check Procedures

1 and 2, respectively. The significance level is o - 0.01.

Un



I~ Rube

Nube CV-0 -2  r= 10"-6

. " of stages
ofsa-s2 -4 -6 -6

(k) c=1-0=10 =1-=10"4 0=1-0=10 1-0=10 1-0=0. 1

1.323 1.417 1.417 1.196 1.631
2 (.730) (.716) (.709) (.658) (.838)

1.401 1.642 1.680 1.198 2.099
(.591) (.574) (.566) (.504) (.732)

4 1.386 1.748 1.847 1.143 2.442
(.504) (.486) (.477) (.414) (.655)

1.281 1.781 1.995 1.006 2.849
(.396) (.378) (.369) (.310) (.551)

8 1.166 1.718 2.009 .886 3.023
(.331) (.314) (.305) (.251) (.481)

1 1.064 1.628 1.964 .789 3.072
(.287) (.270) (.262) (.212) (.430)

* Table 5: Asymptotic efficiencies of k-stage test relative to the fixed-

* . sample-size test with various error probabilities o and 1-0.

|- The k-stage test has an equal number of samples in each stage

and the significance level at each stage is a/k

**|..
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